Rabu, 28 Oktober 2020

Tugas Biologi

1.APA PERBEDAAN REPRODUKSI SEKSUAL ANTARA ORGANISME EUKARIOT DENGAN ORGANISME (BAKTERI)......

Reproduksi eukariota dilakukan melalui pembelahan sel, yang umumnya terjadi secara mitosis, yaitu proses pembelahan inti sel yang menyebabkan sebuah sel anak menerima duplikat setiap kromosom yang dimiliki sel induk. Pada kebanyakan eukariota terdapat juga reproduksi seksual, di antara sel haploid, yaitu sel yang hanya memiliki satu buah kromosom dari masing-masing pasang kromosom yang dimiliki sel induk yang melibatkan proses fusi inti sel (singami) dan pembelahan secara meiosis yang menghasilkan sel diploid, yaitu sel yang memiliki pasangan kromosom yang lengkap.

 

Reproduksi seksual Prokariot dilakukan melalui konjugasi, transduksi, dan tranformasi. Jenis sel prokariot tidak dapat melakukan meiosis.


2) KENAPA, WALAUPUN PERKEMBANG BIAKAN BAKTERI ITU SANGAT CEPAT, TETAPI BAKTERI TIDAK PERNAH SAMPAI MEMENUHI BUMI......

Dunia ini sebenarnya dipenuhi oleh bakteri. Namun bakteri itu tidak semuanya jahat dan merugikan, namun sebagian besar bakteri adalah bakteri menguntingkan. Kenapa bakteri tidak memenuhi dunia ini? Bakteri juga memakan bakteri lainnya, ada juga protozoa mirip hewan (amoeba) yang memakan bakteri seperti paramecium. Jadi kuantitas bakteri berkurang. Bakteri juga memiliki umur, tidak ada bakteri yang kekal. Bakteri juga bisa mati seketika jika lingkungannya tidak mendukungg kelangsungan hidup bakteri tersebut.

3) APA PERBEDAAN PEMBELAHAN SEL PADA BAKTERI (PROKARIOT) DENGAN PEMBELAHAN SEL PADA ORGANISME EUKARIOT

Pembelahan sel adalah proses di mana sel induk membelah menjadi dua atau lebih sel anak. Pembelahan sel biasanya terjadi sebagai bagian dari siklus sel yang lebih besar. Pada eukariota , ada dua jenis pembelahan sel yang berbeda: pembelahan vegetatif, di mana setiap sel anak secara genetik identik dengan sel induk ( mitosis ), dan pembelahan sel reproduksi, di mana jumlah kromosom dalam sel anak berkurang setengahnya. untuk menghasilkan gamet haploid ( meiosis ).

Prokariota ( bakteri dan archaea ) biasanya menjalani pembelahan sel vegetatif yang dikenal sebagai pembelahan biner , di mana materi genetiknya dipisahkan secara merata menjadi dua sel anak. Sementara pembelahan biner mungkin merupakan cara pembagian oleh kebanyakan prokariota, ada cara pembagian alternatif, seperti tunas , yang telah diamati. Semua pembelahan sel, apa pun organisme, didahului oleh satu putaran replikasi DNA .

 

 

 


Selasa, 27 Maret 2018

Pertemuan5-Binary Search Tree-2101660790




Binary Search Tree:
-          Operations: Search, Insertion, Deletion
-          Program Examples
-          Expression Tree Concept
-          Create Exp. Tree from Prefix
-          Create Exp. Tree from Postfix
-          Create Exp. Tree from Infix
-          Prefix, Postfix, Infix Traversal

-          Binary Search Tree has the following basic operations:
-          find(x)             : find key x in the BST
-          insert(x)          : insert new key x into BST
-          remove(x)      : remove key x from BST

           Operations: Search
         Because of the property of BST, finding/searching in BST is easy.
         Let the key that we want to search is X.
     We begin at root
     If the root contains X then search terminates successfully.
     If X is less than root’s key then search recursively on left sub tree, otherwise search recursively on right sub tree.

-            struct node* search (struct node *curr, int X) {
-            if ( curr == NULL ) return NULL;
-            // X is found
-            if ( X == curr->data ) return curr;
-            // X is located in left sub tree
-            if ( X  < curr->data ) return find(curr->left, X);
-            // X is located in right sub tree
-            return find(curr->right, X);
-          }
Operations: Insertion
         Inserting into Binary SearchTree  is done recursively.
         Let the new node’s key be X,
     Begin at root
     If X is less than node’s key then insert X into left sub tree, otherwise insert X into right sub tree
     Repeat until we found an empty node to put X (X will always be a new leaf)
Algorithm:
Step 1:           IF TREE = NULL, then 
                                    Allocate memory for TREE
                        SET TREE->DATA = VAL
                        SET TREE->LEFT = TREE ->RIGHT = NULL
            ELSE
                        IF VAL < TREE->DATA
                                                Insert(TREE->LEFT, VAL)
                        ELSE
                                                Insert(TREE->RIGHT, VAL)
                        [END OF IF]
            [END OF IF]

Step 2: End

Operations: Insertion – Example






Operations: Deletion
         There are 3 cases which should be considered:
     If the key is in a leaf, just delete that node
     If the key is in a node which has one child, delete that node and connect its child to its parent
     If the key is in a node which has two children, find the right most child of its left sub tree (node P), replace its key with P’s key and remove P recursively. (or alternately you can choose the left most child of its right sub tree)
Algorithm:
Step 1: IF TREE = NULL, then 
            Write “VAL not found in the tree”
        ELSE IF VAL < TREE->DATA
            Delete(TREE->LEFT, VAL)
        ELSE IF VAL > TREE->DATA
            Delete(TREE->RIGHT, VAL)
        ELSE IF TREE->LEFT AND TREE->RIGHT
                        SET TEMP = findLargestNode(TREE->LEFT)
                        SET TREE->DATA = TEMP->DATA
                        Delete(TREE->LEFT, TEMP->DATA)
ELSE
            SET TEMP = TREE
            IF TREE->LEFT = NULL AND TREE ->RIGHT = NULL
                        SET TREE = NULL
            ELSE IF TREE->LEFT != NULL
                        SET TREE = TREE->LEFT
            ELSE
                        SET TREE = TREE->RIGHT
            FREE TEMP
Step 2: End
      








Selasa, 20 Maret 2018

pertemuan4-Introduction to Tree, Binary Tree And Expression Tree-ihsan-2101669790




   
         Node at the top is called as root.
         A line connecting the parent to the child is edge.
         Nodes that do not have children are called leaf.
         Nodes that have the same parent are called sibling.
         Degree of node is the total sub tree of the node.
         Height/Depth is the maximum degree of nodes in a tree.
         If there is a line that connects p to q, then p is called the ancestor of q, and q is a descendant of p.



Binary Tree Concept
Binary tree is a rooted tree data structure in which each node has at most two children.

Those two children usually distinguished as left child and right child.

Node which doesn’t have any child is called leaf.





















Type of Binary Tree

PERFECT binary tree is a binary tree in which every level are at the same depth.

COMPLETE binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible. A perfect binary tree is a complete binary tree.

SKEWED binary tree is a binary tree in which each node has at most one child.

BALANCED binary tree is a binary tree in which no leaf is much farther away from the root than any other leaf (different balancing scheme allows different definitions of “much farther”). 

PERFECT Binary Tree






COMPLETE Binary Tree















SKEWED Binary Tree

Property of Binary Tree
Maximum number of nodes on level k of a binary tree is 2k.
Maximum number of nodes on a binary tree of height h is 2h+1 - 1.
Maximum number of nodes on a binary tree of height h is 2h+1 - 1.












Representation of Binary Tree




















struct node {
            int data;
            struct node *left;
            struct node *right;
            struct node *parent;
};

struct node *root = NULL;
Expression Tree Concept
Prefix               : *+ab/-cde
Postfix             : ab+cd-e/*
Infix                 : (a+b)*((c-d)/e)
























We will use this structure for each node in the tree:
struct tnode {
            char chr;
            struct tnode *left;
            struct tnode *right;
};
It is a binary tree.
Create Expression Tree from Prefix
char s[MAXN];
int  p = 0;
void f(struct tnode *curr) {
            if ( is_operator(s[p]) ) {
                        p++; curr->left  = newnode(s[p]);
                        f(curr->left);
                        p++; curr->right = newnode(s[p]);
            f(curr->right);
            }
}
Prefix Traversal
void prefix(struct tnode *curr) {
            printf( “%c “, curr->chr );
            if ( curr->left  != 0 ) prefix(curr->left);
            if ( curr->right != 0 ) prefix(curr->right);
}
Postfix Traversal
void postfix(struct tnode *curr) {
            if ( curr->left  != 0 ) postfix(curr->left);
            if ( curr->right != 0 ) postfix(curr->right);
            printf( “%c“, curr->chr );
}
Infix Traversal
void infix(struct tnode *curr) {
            if ( curr->left  != 0 ) infix(curr->left);
            printf( “%c“, curr->chr );
            if ( curr->right != 0 ) infix(curr->right);
}